Functional Effects of Cuprizone-Induced Demyelination in the Presence of the mTOR-Inhibitor Rapamycin.

在 mTOR 抑制剂雷帕霉素存在下,铜唑酮诱导脱髓鞘的功能效应

阅读:7
作者:Yamate-Morgan Hana, Lauderdale Kelli, Horeczko Joshua, Merchant Urja, Tiwari-Woodruff Seema K
Persistent demyelination has been implicated in axon damage and functional deficits underlying neurodegenerative diseases such as multiple sclerosis. The cuprizone diet model of demyelination allows for the investigation of mechanisms underlying timed and reproducible demyelination and remyelination. However, spontaneous oligodendrocyte (OL) progenitor (OPC) proliferation, OPC differentiation, and axon remyelination during cuprizone diet may convolute the understanding of remyelinating events. The Akt (a serine/threonine kinase)/mTOR (the mammalian target of rapamycin) signaling pathway in OLs regulates intermediate steps during myelination. Thus, in an effort to inhibit spontaneous remyelination, the mTOR inhibitor rapamycin has been administered during cuprizone diet. Intrigued by the potential for rapamycin to optimize the cuprizone model by producing more complete demyelination, we sought to characterize the effects of rapamycin on axonal function and myelination. Functional remyelination was assessed by callosal compound action potential (CAP) recordings along with immunohistochemistry in mice treated with rapamycin during cuprizone diet. Rapamycin groups exhibited similar myelination, but significantly increased axonal damage and inflammation compared to non-rapamycin groups. There was minimal change in CAP amplitude between groups, however, a significant decrease in conduction velocity of the slower, non-myelinated CAP component was observed in the rapamycin group relative to the non-rapamycin group. During remyelination, rapamycin groups showed a significant decrease in OPC proliferation and mature OLs, suggesting a delay in OPC differentiation kinetics. In conclusion, we question the use of rapamycin to produce consistent demyelination as rapamycin increased inflammation and axonal damage, without affecting myelination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。