Jumbo phages such as Pseudomonas aeruginosa ФKZ have potential as antimicrobials and as a model for uncovering basic phage biology. Both pursuits are currently limited by a lack of genetic engineering tools due to a proteinaceous 'phage nucleus' structure that protects from DNA-targeting CRISPR-Cas tools. To provide reverse-genetics tools for DNA jumbo phages from this family, we combined homologous recombination with an RNA-targeting CRISPR-Cas13a enzyme and used an anti-CRISPR gene (acrVIA1) as a selectable marker. We showed that this process can insert foreign genes, delete genes and add fluorescent tags to genes in the ФKZ genome. Fluorescent tagging of endogenous gp93 revealed that it is ejected with the phage DNA while deletion of the tubulin-like protein PhuZ surprisingly had only a modest impact on phage burst size. Editing of two other phages that resist DNA-targeting CRISPR-Cas systems was also achieved. RNA-targeting Cas13a holds great promise for becoming a universal genetic editing tool for intractable phages, enabling the systematic study of phage genes of unknown function.
Bacteriophage genome engineering with CRISPR-Cas13a.
利用 CRISPR-Cas13a 对噬菌体基因组进行编辑
阅读:8
作者:Guan Jingwen, OromÃ-Bosch Agnès, Mendoza Senén D, Karambelkar Shweta, Berry Joel D, Bondy-Denomy Joseph
| 期刊: | Nature Microbiology | 影响因子: | 19.400 |
| 时间: | 2022 | 起止号: | 2022 Dec;7(12):1956-1966 |
| doi: | 10.1038/s41564-022-01243-4 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
