Sulforaphane promotes white matter plasticity and improves long-term neurological outcomes after ischemic stroke via the Nrf2 pathway

萝卜硫素通过Nrf2通路促进白质可塑性,并改善缺血性卒中后的长期神经功能预后。

阅读:3
作者:Qianqian Li ,George Fadoul ,Milos Ikonomovic ,Tuo Yang ,Feng Zhang

Abstract

Aims: Post-stroke cognitive impairment (PSCI) is a common condition following ischemic stroke. Neuronal loss and white matter injury are among the most common neuropathological characteristics in patients with PSCI. The present study tested our hypothesis that activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) reduces neuronal loss, white matter injury, and neurobehavioral deficits in a mouse model of PSCI and investigated the underlying protective mechanisms. Methods: PSCI was modeled in wildtype (WT) and Nrf2 knockout (KO), male and female mice, by distal middle cerebral artery occlusion (dMCAO), with intraperitoneal injections of the Nrf2 activator sulforaphane (Sfn) or vehicle. Long-term (35 days) sensorimotor and cognitive performances, white matter integrity, oligodendrogenesis by BrdU incorporation, and neurite sprouting using anterograde tract-tracing were evaluated up to 35 days after dMCAO. Neuronal apoptosis was evaluated three days after dMCAO. In vitro, primary neuronal cultures were applied to validate the in vivo findings. Results: Compared to vehicle-injected controls, Sfn treatment improved long-term sensorimotor and cognitive deficits after dMCAO in WT male and female mice. Sfn-treated WT mice also had less myelin loss/axonal injury and showed evidence of Nrf2 activation. Sfn treatment failed to provide the same level of protection in Nrf2 KO mice. Mechanistically, the ability of Sfn to reduce neuronal death after ischemia in vitro and in vivo, augment axonal sprouting and enhance oligodendrogenesis after dMCAO was dependent on Nrf2 activation. Conclusion: Our results support that Nrf2 is critical for Sfn-afforded neuroprotection after ischemic stroke. Thus, targeting Nrf2 may be a promising strategy for the treatment of PSCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。