F-box/LRR-repeat protein 12 reorchestrated microglia to inhibit scarring and achieve adult spinal cord injury repair.

F-box/LRR重复蛋白12重组小胶质细胞,抑制瘢痕形成,实现成人脊髓损伤修复

阅读:7
作者:Xu Xu, Gao Feng, Chen Qixin, Chen Bairu, Liang Wenyu, Huang Runzhi, Liu Yuchen, Liu Zhibo, Zhu Yanjing, Lin Gufa, Ma Bei, Yang Letao, Gao Shaorong, Zhu Rongrong, Cheng Liming
Scarring is an insurmountable obstacle for axonal regeneration in recovery from spinal cord injury (SCI). It impedes the repair effects of therapeutic targets in cortical neurons, such as PTEN(-/-) and hyper-IL-6, which cannot break through dense scar barriers to reconstruct neural circuits. However, methods for eliminating this process remain elusive. Here, we conducted a multiomics analysis of SCI and identified FBXL12 as an effective target for inhibiting scarring, further promoting spontaneous crossing of axons at the epicenter. We identified N6-Methyladenosine (m6A) modification as the predominant mRNA modification in SCI, with Fbxl12 being a major modification target. Furthermore, m6A modification specifically promoted FBXL12 synthesis in activated microglia. The overexpression of FBXL12 in microglia contributed to its homogeneous distribution and maintained a "scar-less healing" phenotype. Remarkably, FBXL12 therapy effectively reduced extracellular matrix deposition and decreased the scar area by ~70%. Importantly, axons grew through the epicenter and reached a length of more than 2.4 mm 56 days post-SCI, significantly improving motor function and reconstructing the neural circuit. Mechanistically, FBXL12 promoted cytoskeletal reorganization and migration in microglia by catalyzing the K63-linked ubiquitylation of Myosin heavy chain 14 (MYH14). Together, our results identify m6A-FBXL12-MYH14 axis as a novel cytoskeletal reorganization pathway in activated microglia and suggest FBXL12 as an effective target for a novel microglia-based approach to facilitate scarless functional recovery in SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。