HDAC3 Serine 424 Phospho-mimic and Phospho-null Mutants Bidirectionally Modulate Long-Term Memory Formation and Synaptic Plasticity in the Adult and Aging Mouse Brain.

HDAC3 丝氨酸 424 磷酸化模拟突变体和磷酸化缺失突变体双向调节成年和衰老小鼠大脑中的长期记忆形成和突触可塑性

阅读:9
作者:Rodriguez Alyssa C, Kramár Eniko A, Augustynski Agatha S, Keiser Ashley A, Dong Tri N, Jones Tamara S, Vakilian Shanya N, Patel Sasha T, Rounds Jacob S, Chinn Carlene A, Kwapis Janine L, Matheos Dina P, Wood Marcelo A
Long-term memory (LTM) formation is negatively regulated by histone deacetylase 3 (HDAC3), a transcriptional repressor. Emerging evidence suggests that posttranslational phosphorylation of HDAC3 at its serine 424 (S424) residue is critical for its deacetylase activity in transcription. However, it remains unknown if HDAC3 S424 phosphorylation regulates the ability of HDAC3 to modulate LTM formation. To examine the functionality of S424, we expressed an HDAC3-S424D phospho-mimic mutant (constitutively active form) or an HDAC3-S424A phospho-null mutant (phospho-dead form) in the dorsal hippocampus of mice. We assessed the functional consequence of these mutants on LTM formation and long-term potentiation (LTP) in young adult male mice. We also assessed whether the HDAC3-S424A mutant could ameliorate age-related deficits in LTM and LTP in aging male and female mice. Results demonstrate that young adult male mice expressing the HDAC3-S424D phospho-mimic mutant in the dorsal hippocampus exhibit significantly impaired LTM and LTP. In contrast, the HDAC3-S424A phospho-null mutant expressed in the hippocampus of young adult male mice enabled the transformation of subthreshold learning into robust LTM and enhanced LTP. Similarly, expression of the HDAC3-S424A mutant enabled LTM formation and enhanced LTP in aging male and aging female mice. Overall, these findings demonstrate that HDAC3 S424 is a pivotal residue that has the ability to bidirectionally regulate synaptic plasticity and LTM formation in the adult and aging brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。