Development of oral drug delivery systems that penetrate the colonic mucus remains challenging. Artificial models of porcine colonic mucus have been developed that mimic the rheology and viscosity of the native mucus and its contents of mucins, protein, and lipids. However, they are less representative with regard to the zeta potential, a factor of importance for charged molecules and particles. This study therefore aimed to improve the existing porcine artificial colonic mucus model by exchanging the polymer backbone (used for viscosity) to more closely mimic the charge of porcine native colonic mucus. Polymers studied were poly(acrylic acid), hydroxyethylcellulose, sodium hyaluronate, sodium alginate, and pectin. The resulting porcine artificial colonic mucus was assayed for apparent viscosity, storage modulus, pH, water content, zeta potential, and pore size. The two best-performing polymers (poly(acrylic acid) and hydroxyethylcellulose) were then assayed with diffusion of FITC-dextran, particle tracking of nanoparticles, and binding of FITC-dextran and contrasted to data generated in porcine native colonic mucus (PNCM). Of the two polymers, PACM based on HEC generated zeta potential and binding kinetics similar to those of PNCM. We conclude that the choice of polymer in PACMs is critical for improving their use in drug development. The extensive characterization of the PACMs further points toward the importance of complementary techniques to determine rheological characteristics, mesh, and pore size.
Optimized Artificial Colonic Mucus Enabling Physiologically Relevant Diffusion Studies of Drugs, Particles, and Delivery Systems.
优化的人工结肠粘液可实现药物、颗粒和递送系统的生理相关扩散研究
阅读:9
作者:Tjakra Marco, Chakrapeesirisuk Nopdanai, Jacobson Magdalena, Sellin Mikael E, Eriksson Jens, Teleki Alexandra, Bergström Christel A S
| 期刊: | Molecular Pharmaceutics | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 7; 22(7):4032-4045 |
| doi: | 10.1021/acs.molpharmaceut.5c00298 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
