Biosimilar artificial mucus models that mimic native mucus facilitate efficient, lab-based drug diffusion studies, addressing the costly and challenging preclinical phase of drug development, especially for nano- and micro-scale particle-based colonic drug delivery. This study presents a machine-learning-driven framework that integrates microrheological features into diffusional fingerprinting to characterize nano- and micro-scale particle diffusion patterns in mucus and assess the effect of mucus microrheology on such movements. We investigated the diffusion of fluorescent-labeled polystyrene particles in native pig mucus and two artificial mucus models. Particles (100, 200, and 1000Â nm in diameter) with carboxylate- or amine-modified surfaces were tracked during passive diffusion. From each particle trajectory, 20 features -including microrheology-based parameters- were extracted. Based on these features, seven supervised machine learning models were applied to classify or identify similarities among mucus hydrogels. Of these, gradient boosting achieved the highest accuracy. SHapley Additive exPlanations analysis identified creep compliance as the most influential feature in distinguishing the mucus models. In native mucus, smaller negatively charged nanoparticles exhibited the highest mobility, with fewer particles being in the immobile and subdiffusive states. Microrheology data further indicated that larger particles experienced greater restriction owing to the elastic properties of native mucus. In contrast, smaller particles interacted more with the viscous liquid phase. A comprehensive feature-wide analysis revealed that hydroxyethyl cellulose (HEC)-based artificial mucus more closely resembled native pig mucus than the polyacrylic acid-based model. In conclusion, the machine-learning-driven fingerprinting approach, incorporating microrheological features, successfully differentiated the microstructural characteristics and rheological properties of the three mucus models. It also supported the selection of HEC-based artificial mucus as a viable substitute for native colonic mucus.
Machine learning framework for investigating nano- and micro-scale particle diffusion in colonic mucus.
用于研究结肠粘液中纳米级和微米级颗粒扩散的机器学习框架
阅读:8
作者:Tjakra Marco, Lidayová KristÃna, Avenel Christophe, Bergström Christel A S, Hossain Shakhawath
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 22; 23(1):583 |
| doi: | 10.1186/s12951-025-03659-6 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
