Nuclear PHGDH regulates macrophage polarization through transcriptional repression of GLUD1 and GLS2 in breast cancer.

核PHGDH通过转录抑制GLUD1和GLS2来调节乳腺癌中的巨噬细胞极化

阅读:16
作者:Wang Pei, Du Xin, Han Zhiren, Zhong Jiaxin, Yuan Jiayu, Jiang Lin, Han Beinan, Fu Wenkui, Li Hongde, Hu Hai, Na Zhenkun
OBJECTIVE: Tumor-associated macrophages (TAMs) exhibit heterogeneous properties including anti-tumorigenic and pro-tumorigenic phenotypes. The rate-limiting enzyme in de novo serine biosynthesis, 3-phosphoglycerate dehydrogenase (PHGDH), has a well-established role in cellular metabolism, yet its specific role in macrophages remains unknown. METHODS: Metabolomics assays were conducted to assess metabolite composition and dynamics in macrophages. Changes in polarization and immunosuppressive markers were validated with qRT-PCR. Bioinformatics was used to analyze immune cell subsets and associated metabolic pathways. Finally, ChIP-qPCR and co-immunoprecipitation assays were performed to elucidate the downstream regulatory mechanisms of PHGDH. RESULTS: Serine metabolism was found to be downregulated in TAMs in breast cancer. Functional studies revealed that PHGDH inhibition promotes an M2-like phenotype and immunosuppressive functions in macrophages. Furthermore, PHGDH was found to undergo nuclear translocation during macrophage polarization. Mechanistically, nuclear PHGDH was found to regulate GLUD1 and GLS2 transcription via interaction with the transcription factor STAT3. Rescue experiments demonstrated that glutamine supplementation and STAT3 inhibition reversed the effects of PHGDH on macrophage function. CONCLUSIONS: Our findings reveal a previously unrecognized non-canonical metabolic function of PHGDH, thus providing potential therapeutic targets in the tumor microenvironment for reversing malignant progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。