Background/Objectives: Inflammatory disorders contribute to the pathogenesis of numerous diseases and are known to markedly reduce quality of life. Although anti-inflammatory drugs approved by the Food and Drug Administration are available, their prolonged use is frequently associated with adverse effects. In this study, we evaluated the pharmacological properties of araliadiol, a naturally occurring polyacetylene compound, as a novel anti-inflammatory agent. Methods: An in vitro hyperinflammatory model was established by stimulating RAW 264.7 cells with lipopolysaccharide (LPS). Dexamethasone (DEX) was used as a positive control to compare anti-inflammatory efficacy. The protective effects of araliadiol against LPS-induced cytotoxicity were assessed using adenosine triphosphate content and crystal violet staining assays. The anti-inflammatory activity was further examined by quantitative reverse transcriptase-polymerase chain reaction, Western blotting, cell fractionation, immunofluorescence staining, a nitric oxide assay, and an enzyme-linked immunosorbent assay. Results: Araliadiol significantly attenuated cytotoxicity and cell death in LPS-stimulated RAW 264.7 cells. It suppressed the expression of cell death markers Cleaved caspase-3 and Cleaved PARP-1. In addition, araliadiol downregulated key pro-inflammatory mediators, including inflammasome-related genes, cytokines, chemokines, and inducible nitric oxide synthase. It also reduced the expression of Cox-2 and PGE(2), indicating potential anti-hyperalgesic effects. Moreover, araliadiol inhibited the activation of Nfκb and Stat1 signaling pathways in LPS-stimulated macrophages. Conclusions: Araliadiol demonstrated robust anti-cytotoxic, anti-inflammatory, and anti-hyperalgesic activities in LPS-induced RAW 264.7 cells, with efficacy comparable to DEX. These findings support its potential as a plant-derived therapeutic candidate for the management of inflammatory conditions.
Pharmacological Evaluation of Araliadiol as a Novel Anti-Inflammatory Agent in LPS-Induced RAW 264.7 Cells.
对阿拉利二醇作为新型抗炎剂在LPS诱导的RAW 264.7细胞中的药理学评价
阅读:6
作者:Park Seokmuk, Cho Suhyeon, Shin Hee-Jae, Baek Seyeol, Gwon Hye-In, Lee Jungmin, Yoo Dae Sung, Park Han Woong, Seo Dae Bang, Bae Seunghee
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 8; 13(6):1408 |
| doi: | 10.3390/biomedicines13061408 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
