Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip.

等离子体芯片上等离子体模式激发和发射增强的显微研究

阅读:7
作者:Chida Hinako, Tawa Keiko
Excitation and emission enhancement by using the plasmon mode formed on a plasmonic chip was studied with a microscope and micro-spectroscope. Surface plasmon resonance wavelengths were observed on one-dimensional (1D) and two-dimensional (2D) plasmonic chips by measuring reflection and transmission spectra, and they were assigned to the plasmon modes predicted by the theoretical resonance wavelengths. The excitation and emission enhancements were evaluated using the fluorescence intensity of yellow-green fluorescence particles. The 2D grating had plasmon modes of kgx45(2) (diagonal direction with m = 2) in addition to the fundamental mode of kgx(1) (direction of a square one side) in the visible range. In epifluorescence detection, the excitation enhancement factors of kgx(2) on the 1D and 2D chips were found to be 1.3-1.4, and the emission enhancement factor of kgx45(2) on the 2D chip was 1.5-1.8, although the emission enhancement was not found on the 1D chip. Moreover, enhancement factors for the other fluorophores were also studied. The emission enhancement factor of kgx(1) was shown to depend on the fluorescence quantum yield. The emission enhancement of 2D was 1.3-fold larger than that of 1D considering all azimuth components, and the 2D pattern was shown to be advantageous for bright fluorescence microscopic observation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。