Chromosomal tethering and mitotic transcription promote ecDNA nuclear inheritance.

染色体连接和有丝分裂转录促进ecDNA核遗传

阅读:12
作者:Nichols Ashley, Choi Yujin, Norman Roshan Xavier, Chen Yanyang, Striepen Josefine, Salataj Eralda, Toufektchan Eléonore, Koche Richard, Maciejowski John
Extrachromosomal DNAs (ecDNAs) are circular DNAs that function in tumor progression and treatment resistance by amplifying oncogenes. ecDNAs lack centromeres and thus are not constrained to Mendelian segregation, enabling unequal and rapid accumulation within daughter cells. Despite intrinsic links to their oncogenic potential, the fidelity and mechanisms of ecDNA inheritance are poorly understood. Using human cancer cell lines, we show that ecDNAs are protected against cytosolic mis-segregation through mitotic clustering and tethering to mitotic chromosome ends. Accurate nuclear segregation of MYC-amplifying ecDNA depends on BRD4 transcriptional co-activation and mitotic transcription of the long non-coding RNA PVT1, which is frequently co-amplified with MYC. Disruption of ecDNA mitotic clustering through BRD4 inhibition, PVT1 depletion, or transcription inhibition causes ecDNA micronucleation and formation of homogeneously staining regions. We propose that nuclear inheritance of ecDNA is facilitated by an RNA-based mechanism that clusters ecDNA during mitosis and protects against cytosolic mis-segregation and chromosomal reintegration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。