High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.
A deep learning strategy to identify cell types across species from high-density extracellular recordings.
利用深度学习策略,从高密度细胞外记录中识别不同物种的细胞类型
阅读:8
作者:Beau Maxime, Herzfeld David J, Naveros Francisco, Hemelt Marie E, D'Agostino Federico, Oostland Marlies, Sánchez-López Alvaro, Chung Young Yoon, Maibach Michael, Kyranakis Stephen, Stabb Hannah N, MartÃnez Lopera M Gabriela, Lajko Agoston, Zedler Marie, Ohmae Shogo, Hall Nathan J, Clark Beverley A, Cohen Dana, Lisberger Stephen G, Kostadinov Dimitar, Hull Court, Häusser Michael, Medina Javier F
| 期刊: | Cell | 影响因子: | 42.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 17; 188(8):2218-2234 |
| doi: | 10.1016/j.cell.2025.01.041 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
