Arsenic-resistant Klebsiella oxytoca strain AT-02 was isolated from the ground water of the Multan region of Pakistan. The strain displayed high arsenite and arsenate resistance as minimal inhibitory concentration (MIC) was 600ppm and 10,000ppm respectively. The high tolerance of the isolated strain towards arsenate can be postulated due to significant increase in biofilm in response to arsenate. The bacterial strain exposed to 1/2 and 3/4 MIC showed a significant 10 and 12 folds increase in expression of the arsenite efflux gene arsB. Sequential and structural comparison of the arsB gene showed the presence of conserved arsenic binding residues. Arsenic remediation by AT-02 biomass was 50% after 0.5 hours of incubation and 66% in 2 hours. the increase in remediation efficiency with the increase in incubation time indicates its biosorption potential. the arsenic sensitive strain NK11 showed only 4-5% arsenic remediation. Fourier transform infrared spectroscopy (FTIR) analysis confirmed interaction of arsenate and arsenite with functional groups (aromatic amino acid residues) on the cell surface leading to characteristic peak shifts. Thus, the isolated AT-02 has the potential to remediate both arsenite and arsenate from contaminated environmental sites.
Arsenic efflux and bioremediation potential of Klebsiella oxytoca via the arsB gene.
通过 arsB 基因研究产酸克雷伯氏菌的砷外排和生物修复潜力
阅读:6
作者:Waqar Sana, Tariq Aamira, Ullah Ubaid, Haleem Hira, Aimen Hadiqa, Sattar Sadia, Bostan Nazish
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jan 29; 20(1):e0307918 |
| doi: | 10.1371/journal.pone.0307918 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
