Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics

使用蜡印柱作为微流体的延迟屏障来提高基于金纳米粒子的横向流动分析的灵敏度

阅读:7
作者:Lourdes Rivas, Mariana Medina-Sánchez, Alfredo de la Escosura-Muñiz, Arben Merkoçi

Abstract

Although lateral flow assays (LFAs) are currently being used in some point-of-care applications (POC), they cannot still be extended to a broader range of analytes for which higher sensitivities and lower detection limits are required. To overcome such drawbacks, we propose here a simple and facile alternative based on the use of delay hydrophobic barriers fabricated by wax printing so as to improve LFA sensitivity. Several wax pillar patterns were printed onto the nitrocellulose membrane in order to produce delays as well as pseudoturbulence in the microcapillary flow. The effect of the proposed wax pillar-modified devices was also mathematically simulated, corroborating the experimental results obtained for the different patterns tested afterwards for detection of HIgG as model protein in a gold nanoparticle-based LFA. The effect of the introduction of such wax-printed pillars was a sensitivity improvement of almost 3-fold compared to the sensitivity of a conventional free-barrier LFA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。