TAX1BP1-dependent autophagic degradation of STING1 impairs anti-tumor immunity

TAX1BP1依赖的STING1自噬降解会损害抗肿瘤免疫力

阅读:2
作者:Ruoxi Zhang ,Chunhua Yu ,Herbert J Zeh ,Guido Kroemer ,Daniel J Klionsky ,Daolin Tang ,Rui Kang
The activation of STING1 can lead to the production and secretion of cytokines, initiating antitumor immunity. Here, we screened an ion channel ligand library and identified tetrandrine, a bis-benzylisoquinoline alkaloid, as an immunological adjuvant that enhances antitumor immunity by preventing the autophagic degradation of the STING1 protein. This tetrandrine effect is independent of its known function as a calcium or potassium channel blocker. Instead, tetrandrine inhibits lysosomal function, impairing cathepsin maturation, and autophagic degradation. Proteomic analysis of lysosomes identified TAX1BP1 as a novel autophagic receptor for the proteolysis of STING1. TAX1BP1 recognizes STING1 through the physical interaction of its coiled-coil domain with the cyclic dinucleotide binding domain of STING1. Systematic mutation of lysine (K) residues revealed that K63-ubiquitination of STING1 at the K224 site ignites TAX1BP1-dependent STING1 degradation. Combined treatment with tetrandrine and STING1 agonists promotes antitumor immunity by converting "cold" pancreatic cancers into "hot" tumors. This process is associated with enhanced cytokine release and increased infiltration of cytotoxic T-cells into the tumor microenvironment. The antitumor immunity mediated by tetrandrine and STING1 agonists is limited by neutralizing antibodies to the type I interferon receptor or CD8(+) T cells. Thus, these findings establish a potential immunotherapeutic strategy against pancreatic cancer by preventing the autophagic degradation of STING1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。