Objective: This review provides an overview of the current knowledge regarding the mechanisms of action of AGuIX, a clinical-stage theranostic nano-radiosensitizer composed of gadolinium. It covers the steps following the administration, from the internalization in tumor cells to the interaction with X-rays and the subsequent physical, chemical, biological, and immunological events. Results: After intravenous injection, AGuIX accumulates in tumors through the enhanced permeability and retention (EPR) effect, and its specific retention properties allow its persistence in tumors for several days. At the cellular level, the nanomedicine is internalized by endocytic processes and mainly located in the cytoplasm, especially in lysosomes. AGuIX enhances the effects of radiotherapy (RT) at several levels, starting from radiation-matter interactions to a chemical stage of reactive oxygen species (ROS) production, followed by a cascade of biological events leading to tumor cell death and immune response. Indeed, AGuIX induces a local increase in radiation dose deposition through the emission of Auger electrons, leading to a subsequent increase in ROS generation. AGuIX also impacts RT-induced biological mechanisms, including DNA damage and cell death mechanisms such as apoptosis, autophagic cell death, and ferroptosis. Last, the combination of AGuIX and RT stimulates an antitumor immune response through the induction of immunogenic cell death (ICD), the activation of dendritic and T cells, and the reprogramming of tumor-associated macrophages (TAMs) into a pro-inflammatory phenotype. Conclusions: AGuIX is a clinical-stage nanoparticle (NP) intravenously administered with pan-cancer potential due to its specific biodistribution properties and a strong ability to amplify RT-induced mechanisms.
Mechanisms of Action of AGuIX as a Pan-Cancer Nano-Radiosensitizer: A Comprehensive Review.
AGuIX作为泛癌纳米放射增敏剂的作用机制:综合综述
阅读:11
作者:Aubrun Clémentine, Doussineau Tristan, Carmès Léna, Meyzaud Aurélien, Boux Fabien, Dufort Sandrine, Delfour Adeline, De Beaumont Olivier, Mirjolet Céline, Le Duc Géraldine
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 2; 18(4):519 |
| doi: | 10.3390/ph18040519 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
