Background: Cigarette smoke (CS) is a major risk factor for chronic lung conditions. Oxidative stress and mitochondrial dysfunction play a crucial role in CS-induced pulmonary injury. 3,5-Diiodothyronine (T2) affects energy metabolism, having mitochondria as a major target. However, the underlying mechanisms of T2 related to lung diseases are poorly understood. Aims: To investigate the protective action of T2 on CS-induced mitochondrial dysfunction in an in vitro model of human epithelial alveolar cells. Methods: ATP synthesis and cytochrome c oxidase (COX) activity, as a marker of mitochondrial function, was assessed in A549 cells pretreated with T2 and exposed to CS using a bioluminescence assay and an Oroboros 2k-Oxygraph system, respectively. An evaluation of the oxidative status was conducted by assessing superoxide radical production, superoxide dismutase (SOD) activity, and H(2)O(2) levels. Moreover, we investigated the mitochondrial mass via Mito-Tracker Green (MTG) staining and flow cytometry analysis. Results: CS significantly reduced ATP production. T2 pretreatment was found to prevent CS-induced impairments in ATP synthesis, enhancing COX activity. Additionally, the 2 h T2 pretreatment of CS-exposed cells mitigated CS-induced oxidative stress, thereby enhancing SOD activity and reducing the superoxide anion and H(2)O(2) levels. Finally, MTG labeling was correlated with CS-induced mitochondrial mass gain, which is associated with cell senescence. Unexpectedly, T2 was not able to significantly prevent this mass increment, probably due to its rapid mode of action. Conclusions: Our results provide new insights into the protective effects of T2 against CS-induced mitochondrial damage.
Protective Action of 3,5-Diiodo-L-Thyronine on Cigarette Smoke-Induced Mitochondrial Dysfunction in Human Alveolar Epithelial Cells.
3,5-二碘-L-甲状腺素对香烟烟雾诱导的人类肺泡上皮细胞线粒体功能障碍的保护作用
阅读:6
作者:Panico Francesca, Mirra Davida, Petito Giuseppe, Spaziano Giuseppe, Del Vecchio Vitale, Esposito Renata, Senese Rosalba, Desiderio Vincenzo, Lanni Antonia, D'Agostino Bruno
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 22; 13(5):1014 |
| doi: | 10.3390/biomedicines13051014 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
