INTRODUCTION: Emerging evidence implicates gut microbiota dysbiosis as a key modulator for the pathogenesis of Alzheimer's disease (AD) via the gut-brain axis. To investigate the causal role of microbial communities in AD progression, we performed fecal microbiota transplantation (FMT) in APP/PS1 transgenic mice using donor microbiota from healthy wild-type mice or dextran sulfate sodium (DSS)-induced colitis mice. METHODS: Cognitive function, amyloid-beta (Aβ) pathology, and pro-inflammatory cytokine levels were assessed in mice. 16S ribosomal RNA sequencing of gut microbiota and bioinformatic functional analyses were applied to identify the specific microbial communities potentially involved in AD progression. RESULTS: FMT-WT mice (fecal microbiota transplantation from healthy wild-type mice) exhibited significant improvements in spatial memory (Morris Water Maze), exploratory behavior (Y-maze), and locomotor activity (Open Field Test), alongside reduced Aβ plaque burden and normalized expression of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in both gut and brain tissues. Conversely, FMT-DSS mice (fecal microbiota transplantation from DSS-treated donors) displayed exacerbated cognitive deficits, heightened Aβ deposition, and elevated pro-inflammatory cytokine levels. Microbial profiling revealed stark contrasts: FMT-WT mice harbored beneficial taxa (Bacteroides, Lachnospiraceae) linked to anti-inflammatory products like short-chain fatty acid, while FMT-DSS mice showed blooms of pathogenic genera (Erysipelatoclostridium, Enterobacteriaceae) associated with neurotoxic metabolites. Functional analyses predicted enrichment of neuroprotective pathways (e.g., lysine metabolism) in FMT-WT and pro-inflammatory pathways (e.g., carbon metabolism) in FMT-DSS. Crucially, neuroinflammation occurred independently of gut barrier disruption, implicating circulating microbial metabolites as key mediators. DISCUSSION: Our findings demonstrate that gut microbiota composition bidirectionally influences AD progression, with FMT from healthy donors attenuating neuroinflammation and pathology, while colitis-associated dysbiosis exacerbates disease hallmarks. Our study positions microbiota-targeted therapies as a promising strategy to modulate AD progression through the gut-brain axis.
Bidirectional modulation of Alzheimer's disease via gut microbiota: rescue by fecal transplantation from healthy donors and aggravation by colitis-associated dysbiosis.
通过肠道菌群对阿尔茨海默病进行双向调节:健康供体的粪便移植可挽救病情,而结肠炎相关的菌群失调则会加重病情
阅读:8
作者:Zhou Chenglong, Feng Xin, Liu Huina, Cai Ting, Li Yihong, Fan Huadong
| 期刊: | Frontiers in Neuroscience | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 May 23; 19:1593854 |
| doi: | 10.3389/fnins.2025.1593854 | 研究方向: | 炎症/感染 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
