Inositol-requiring enzyme 1 (IRE1) is one of three known sensor proteins that respond to homeostatic perturbations in the metazoan endoplasmic reticulum. The three sensors collectively initiate an intertwined signaling network called the Unfolded Protein Response (UPR). Although IRE1 plays pivotal roles in human health and development, understanding its specific contributions to the UPR remains a challenge due to signaling crosstalk from the other two stress sensors. To overcome this problem, we engineered a light-activatable version of IRE1 and probed the transcriptomic effects of IRE1 activity in isolation from the other branches of the UPR. We demonstrate that 1) oligomerization alone is sufficient to activate IRE1 in human cells, 2) IRE1's transcriptional response evolves substantially under prolonged activation, and 3) the UPR induces major changes in mRNA splice isoform abundance in an IRE1-independent manner. Our data reveal previously unknown targets of IRE1 transcriptional regulation and direct degradation. Additionally, the tools developed here will be broadly applicable for precise dissection of signaling networks in diverse cell types, tissues, and organisms.
Optogenetic Clustering of Human IRE1 Reveals Differential Regulation of Transcription and mRNA Splice Isoform Abundance by the UPR.
人类 IRE1 的光遗传学聚类揭示了 UPR 对转录和 mRNA 剪接异构体丰度的差异性调控
阅读:7
作者:Smith Jacob W, Wilburn Damien B, Belyy Vladislav
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 21 |
| doi: | 10.1101/2025.07.16.665212 | 种属: | Human |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
