CRISPR-Cas-based lateral flow assays (LFAs) have emerged as a promising diagnostic tool for ultrasensitive detection of nucleic acids, offering improved speed, simplicity and cost-effectiveness compared to polymerase chain reaction (PCR)-based assays. However, visual interpretation of CRISPR-Cas-based LFA test results is prone to human error, potentially leading to false-positive or false-negative outcomes when analyzing test/control lines. To address this limitation, we have developed two neural network models: one based on a fully convolutional neural network and the other on a lightweight mobile-optimized neural network for automated interpretation of CRISPR-Cas-based LFA test results. To demonstrate proof of concept, these models were applied to interpret results from a CRISPR-Cas13-based LFA for the detection of the SARS-CoV-2 N gene, a key marker for COVID-19 infection. The models were trained, evaluated, and validated using smartphone-captured images of LFA devices in various orientations with different backgrounds, lighting conditions, and image qualities. A total of 3146 images (1569 negative, 1577 positive) captured using an iPhone 13 or Samsung Galaxy A52 Android smartphone were analyzed using the trained models, which classified the LFA results within 0.2 s with 96.5% accuracy compared to the ground truth. These results demonstrate the potential of machine learning to accurately interpret test results of CRISPR-Cas-based LFAs using smartphone-captured images in real-world settings, enabling the practical use of CRISPR-Cas-based diagnostic tools for self- and at-home testing.
Rapid and automated interpretation of CRISPR-Cas13-based lateral flow assay test results using machine learning.
利用机器学习快速自动解读基于 CRISPR-Cas13 的侧向流动检测结果
阅读:7
作者:Xue Mengyuan, Gonzalez Diego H, Osikpa Emmanuel, Gao Xue, Lillehoj Peter B
| 期刊: | Sensors & Diagnostics | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2024 Dec 26; 4(2):171-181 |
| doi: | 10.1039/d4sd00314d | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
