Structure of a step II catalytically activated spliceosome from Chlamydomonas reinhardtii.

莱茵衣藻 II 步催化激活剪接体的结构

阅读:6
作者:Lu Yichen, Liang Ke, Zhan Xiechao
Pre-mRNA splicing, a fundamental step in eukaryotic gene expression, is executed by the spliceosomes. While there is extensive knowledge of the composition and structure of spliceosomes in yeasts and humans, the structural diversity of spliceosomes in non-canonical organisms remains unclear. Here, we present a cryo-EM structure of a step II catalytically activated spliceosome (C(*) complex) derived from the unicellular green alga Chlamydomonas reinhardtii at 2.6 à resolution. This Chlamydomonas C(*) complex comprises 29 proteins and four RNA elements, creating a dynamic assembly that shares a similar overall architecture with yeast and human counterparts but also has unique features of its own. Distinctive structural characteristics include variations in protein compositions as well as some noteworthy RNA features. The splicing factor Prp17, with four fragments and a WD40 domain, is engaged in intricate interactions with multiple protein and RNA components. The structural elucidation of Chlamydomonas C(*) complex provides insights into the molecular mechanism of RNA splicing in plants and understanding splicing evolution in eukaryotes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。