Crystallographic characterization of steel microstructure using neutron diffraction.

利用中子衍射对钢的微观结构进行晶体学表征

阅读:9
作者:Tomota, Yo
Applications of neutron diffraction to microstructure evaluation of steel investigated by a project commissioned by the Innovative Structural Materials Association are summarized. The volume fraction of austenite (γ) for a 1.5Mn-1.5Si-0.2C steel was measured by various techniques including backscatter electron diffraction (EBSD) and X-ray diffraction. It is recommended to measure volume fraction and texture simultaneously using neutron diffraction. The γ reverse transformation was in situ monitored using dilatometry, EBSD, X-ray diffraction and neutron diffraction. The γ reversion kinetics showed excellent agreements between dilatometry and neutron diffraction, whereas the γ formation started at higher temperatures in EBSD and X-ray diffraction measurements. Such discrepancy is attributed to the change in chemical compositions at the specimen surface by heating; Mn and C concentrations were decreased with heating. Phase transformations from γ upon cooling were monitored, which enabled us to elucidate the changes in lattice parameters of ferrite (α) and γ affected by not only thermal contraction but also transformation strains, thermal misfit strains and carbon enrichment in γ in the above hypoeutectoid steel. Pearlitic transformation started after the carbon enrichment reached approximately 0.76 mass% and contributed to diffraction line broadening. Martensitic transformation with or without ausforming at 700°C was monitored for a medium carbon low alloyed steel. Dislocation density after ausforming was determined using the convolutional multiple whole profile fitting method for 10 s time-sliced data. The changes in γ and martensite lattice parameters upon quenching were tracked and new insights on internal stresses and the axial ratio of martensite were obtained.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。