NMN Supplementation Inhibits Endothelial Cell ROS-Mediated Src/Pi3k/Akt Signaling Pathway to Protect High-Altitude Blood-Retinal Barrier.

NMN补充剂抑制内皮细胞ROS介导的Src/Pi3k/Akt信号通路,从而保护高海拔血视网膜屏障

阅读:12
作者:Liu Siyuan, Du Ning, Ge Keke, Hu Jiayue, Zhang Wenfang
PURPOSE: High-altitude retinopathy (HAR) is primarily caused by hypobaric hypoxia, leading to hemodynamic changes in the retina and disruption of the blood-retinal barrier (BRB), which results in vasogenic edema. Currently, treatment strategies for this condition are limited. In this study, we investigated the protective effect of nicotinamide mononucleotide (NMN) against high-altitude hypoxia-induced BRB disruption and its potential molecular mechanisms. METHODS: We established a mouse model of high-altitude BRB injury using a simulated high-altitude environment chamber. Vascular leakage was observed through the Evans Blue dye leakage assay, and retinal Nicotinamide adenine dinucleotide (NAD+) levels were measured using the WST-8 assay. Human umbilical vein endothelial cells (HUVECs) were cultured in a hypoxic chamber, and the permeability of a confluent monolayer to FITC-dextran was monitored. With or without NMN intervention, VE-cadherin expression or phosphorylation at cell junctions was analyzed by Western blot and/or immunofluorescence. Apoptosis levels were assessed via Western blot, TUNEL staining, or flow cytometry, whereas reactive oxygen species (ROS) levels were observed using DCFH-DA, MitoSOX, or DHE probes. DNA damage levels were measured using 8-Oxoguanine immunofluorescence staining, and phosphorylation levels of the Src/Pi3k/Akt signaling pathway were analyzed via Western blot. RESULTS: High-altitude hypoxia led to increased retinal cell apoptosis and significant phosphorylation of VE-cadherin in endothelial cells, which resulted in a marked increase in BRB permeability. Both in vitro and in vivo experiments showed that NMN intervention reduced endothelial cell apoptosis and permeability. Additionally, NMN protected the endothelial barrier by regulating ROS levels in endothelial cells, inhibiting Src phosphorylation, and downregulating the downstream Pi3k/Akt signaling pathway. CONCLUSIONS: These findings establish the role of NMN and the ROS-mediated Src/Pi3k/Akt signaling pathway in protecting the endothelial barrier, and identify a potential therapeutic strategy for protecting against hypoxia-related BRB leakage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。