Rational Design of EV-Mimicking Nanoparticles with Polarity-Based Recognition Potential for Advanced Nanocarrier Development.

合理设计具有极性识别潜力的 EV 模拟纳米粒子,用于先进纳米载体的开发

阅读:9
作者:Rosso Giada, Van Veen Stijn M A, Sancho-Albero María, Tamboia Giulia, Empereur-Mot Charly, Perego Claudio, Kuipers Marije E, Dumontel Bianca, Ajó Alessandro, Nolte-'t Hoen Esther N, Pavan Giovanni M, Cola Luisa De, Albertazzi Lorenzo, Cauda Valentina
Extracellular vesicles (EVs) are natural carriers that are essential for intracellular communication, delivering biomolecules with high efficiency and selectivity. Their application in a clinical setting has been limited, however, due to their complexity and heterogeneity, which hamper standardization in isolation procedures. A solution could be to engineer synthetic nanoparticles that are able to mimic the natural EV structure and function, which would lead to innovative therapeutic nanoplatforms with key advantages over traditional synthetic nanoparticles in terms of toxicity and efficacy. Here, we report an approach to designing, synthesizing, and characterizing lipid-coated nanoparticles engineered to replicate key biophysical surface properties of EVs relevant to cellular recognition and biointerface interactions. Three different lipidic mixtures were designed based on lipidomic data of prostate cancer-derived EVs, taking into consideration the mass percentage of both the lipid families and the fatty acids. Furthermore, breakable organosilica nanocapsules were employed as a functional core and coated with the lipidic mixtures to form eventual EV-mimicking nanocarriers (EV Mimics). Computational modeling of the lipid bilayer was employed to further optimize the lipid coverage of the organosilica nanocapsules. In addition to conventional characterization techniques, which assessed the matching of size and surface charge of EV Mimics and natural EVs, we used advanced single-particle characterization techniques, such as high-resolution flow cytometry and super-resolution microscopy, to assess coating efficacy, size distribution, and lipid polaritya key parameter in cellular uptake and membrane interaction of EV Mimics. This multidisciplinary approach led to the discovery of a formulation (called "CE Mimic 3", composed of Chol/SM/PE/PC/PS with respective mass ratios of 30/16.1/12.9/20.9/20.1) that closely reproduces the size, charge, lipid coating, and polarity of natural EVs, thus laying the groundwork for the development of EV-mimetic nanoplatforms for biomedical applications such as targeted delivery or biosensing.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。