Salvia miltiorrhiza Root Extract as a Potential Therapeutic Agent for IgE/Ag-Induced Allergic Reactions and Atopic Dermatitis via the Syk/MAPK Pathway

丹参根提取物通过Syk/MAPK通路作为IgE/Ag诱导的过敏反应和特应性皮炎的潜在治疗剂

阅读:3
作者:Min-Ah Kim ,Jin-Ho Lee ,Keunjung Woo ,Eunwoo Jeong ,Tack-Joong Kim

Abstract

Background/Objectives: Allergens can trigger severe immune responses in hypersensitive individuals, with mast cells releasing inflammatory mediators via IgE-FcɛRI signaling. Spleen tyrosine kinase (Syk) is a key regulator in this pathway, making it a promising therapeutic target. Natural modulators of Syk-mediated mast cell activation remain underexplored. This study investigated the anti-allergic effects of a 70% ethanol extract of Salvia miltiorrhiza (SME) using in vitro and in vivo models. Methods: SME was evaluated using IgE-sensitized RBL-2H3 cells, a passive cutaneous anaphylaxis model, and a DNCB-induced atopic dermatitis-like mouse model. Allergic responses were assessed via degranulation assays, histopathology, serum IgE levels, and the spleen index. Results: SME significantly inhibited mast cell degranulation by 44.4 ± 1.6% in RBL-2H3 cells at 100 µg/mL following 30 min of treatment compared to the untreated control. Western blot analysis demonstrated dose-dependent suppression of protein kinase B (PKB, also known as AKT), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and spleen tyrosine kinase (Syk) phosphorylation, indicating inhibition of key allergic signaling pathways. In an IgE/Ag-induced passive cutaneous anaphylaxis model in ICR mice, SME (100 mg/kg, orally) significantly attenuated vascular permeability, as evidenced by a 20.6 ± 9.7% reduction in Evans blue extravasation relative to the Ag-treated group. In a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD)-like model, six treatments of SME significantly improved the skin condition, reduced spleen enlargement associated with allergic inflammation, and decreased serum IgE levels by 43.3 ± 11.2% compared to the DNCB group. Conclusions: These findings suggest that SME may help to alleviate allergic responses and AD by modulating key immune signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。