The purpose of this study is to present a novel strategy to enhance collagen production in cells. To identify amino acid analogs with excellent collagen production-enhancing effects, human dermal fibroblasts (HDFs) were treated with 20 kinds of amidated amino acids and 20 kinds of free amino acids, individually at 1 mM. The results showed that glycinamide enhanced collagen production (secreted collagen level) most effectively. Glycine also enhanced collagen production to a lesser degree. However, other glycine derivatives, such as N-acetyl glycine, N-acetyl glycinamide, glycine methyl ester, glycine ethyl ester, and glycyl glycine, did not show such effects. Glycinamide increased type I and III collagen protein levels without affecting COL1A1 and COL3A1 mRNA levels, whereas transforming growth factor-β1 (TGF-β1, 10 ng mL(-1)) increased both mRNA and protein levels of collagens. Ascorbic acid (AA, 1 mM) increased COL1A1 and COL3A1 mRNA and collagen I protein levels. Unlike TGF-β1, AA and glycinamide did not increase the protein level of α-smooth muscle actin, a marker of differentiation of fibroblasts into myofibroblasts. The combination of AA and glycinamide synergistically enhanced collagen production and wound closure in HDFs to a level similar to that in cells treated with TGF-β1. AA derivatives, such as magnesium ascorbyl 3-phosphate (MAP), 3-O-ethyl ascorbic acid, ascorbyl 2-O-glucoside, and ascorbyl tetraisopalmitate, enhanced collagen production, and the mRNA and protein levels of collagens at 1 mM, and their effects were further enhanced when co-treated with glycinamide. Among AA derivatives, MAP had a similar effect to AA in enhancing wound closure, and its effect was further enhanced by glycinamide. Other AA derivatives had different effects on wound closure. This study provides a new strategy to enhance cell collagen production and wound healing using glycinamide in combination with AA.
Combination of Glycinamide and Ascorbic Acid Synergistically Promotes Collagen Production and Wound Healing in Human Dermal Fibroblasts.
甘氨酰胺和抗坏血酸的组合可协同促进人类真皮成纤维细胞的胶原蛋白生成和伤口愈合
阅读:4
作者:Lee Ji Eun, Boo Yong Chool
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Apr 29; 10(5):1029 |
| doi: | 10.3390/biomedicines10051029 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
