Fungal Argonaute proteins act in bidirectional cross-kingdom RNA interference during plant infection.

真菌 Argonaute 蛋白在植物感染过程中发挥双向跨界 RNA 干扰作用

阅读:7
作者:Cheng An-Po, Huang Lihong, Oberkofler Lorenz, Johnson Nathan R, Glodeanu Adrian-Stefan, Stillman Kyra, Weiberg Arne
Argonaute (AGO) proteins bind to small RNAs to induce RNA interference (RNAi), a conserved gene regulatory mechanism in animal, plant, and fungal kingdoms. Small RNAs of the fungal plant pathogen Botrytis cinerea were previously shown to translocate into plant cells and to bind to the host AGO, which induced cross-kingdom RNAi to promote infection. However, the role of pathogen AGOs during host infection stayed elusive. In this study, we revealed that members of fungal plant pathogen B. cinerea BcAGO family contribute to plant infection. BcAGO1 binds to both fungal and plant small RNAs during infection and acts in bidirectional cross-kingdom RNAi, from fungus to plant and vice versa. BcAGO2 also binds fungal and plant small RNAs but acts independent from BcAGO1 by regulating distinct genes. Nevertheless, BcAGO2 is important for infection, as it is required for effective pathogen small RNA delivery into host cells and fungal induced cross-kingdom RNAi. Providing these mechanistic insights of pathogen AGOs promises to improve RNAi-based crop protection strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。