Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber.

比较脂质组学分析为绿色棉纤维颜色形成的代谢基础提供了新的见解

阅读:8
作者:Li Tongtong, Zheng Congcong, Wu Jianfei, Xu Wei, Yan Tongdi, Liu Junchen, Zhang Li, Tang Zhengmin, Fan Yupeng, Guo Huihui, Zeng Fanchang
Green fiber (GF) is a naturally colored fiber. A limited understanding of its color formation mechanism restricts the improvement of colored cotton quality. This experiment used upland cotton green fiber germplasm 1-4560 and genetic inbred line TM-1; the lipid profiles of green fibers at 30 (white stage) and 35 days post-anthesis (DPA) (early greening stage), as well as those of TM-1 at the same stages, were revealed. Among the 109 differential types of lipids (DTLs) unique to GF, the content of phosphatidylserine PS (16:0_18:3) was significantly different at 30 and 35 DPA. It is speculated that this lipid is crucial for the pigment accumulation and color formation process of green fibers. The 197 DTLs unique to TM-1 may be involved in white fiber (WF) development. Among the shared DTLs in GF35 vs. GF30 and WF35 vs. WF30, sulfoquinovosyldiacyl-glycerol SQDG (18:1_18:1) displays a significant difference in the content change between green fibers and white fibers, potentially affecting color formation through changes in content. The enriched metabolic pathways in both comparison groups are relatively conserved. In the most significantly enriched glycerophospholipid metabolic pathway, 1-acyl-sn-glycero-3-phosphocholine (C04230) only appears in white cotton. This indicates differences in the metabolic pathways between white and green fibers, potentially related to different mechanisms of color formation and fiber development. These findings provide a new theoretical basis for studying cotton fiber development and offer important insights into the specific mechanism of green fiber color formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。