Pineapple core is considered a processing by-product. This study proposed and evaluated an ohmic heating extraction-based valorization platform to obtain value-added bioactive compounds from pineapple core and studied the effects of four important processing parameters. In this sense, a Taguchi design (L16(4)4) was used to assess the effects of temperature (70, 80, 90, and 100 °C), time (15, 30, 45, and 60 min), voltage (110, 160, 210, and 260 V), and frequency (60, 340, 620, and 900 Hz) on heating rate, come-up time, energy consumption, system performance efficiency, total phenolic compounds (TPC), DPPH, and ABTS. Finally, a side-by-side comparison of optimized ohmic heating (OOH) and conventional extraction was performed, and chemical composition was compared by ultra-performance liquid chromatography equipped with photodiode array detection-mass (UPLC-DAD-ESI-MS-MS). According to the results, increasing temperatures enhanced system performance efficiency but negatively affected TPC and antioxidant values above 90 â. Similarly, prolonging the extraction (>30 min) decreased TPC. Further, increasing voltage (from 110 to 260 V) shortened the come-up time (from 35.75 to 5.16 min) and increased the heating rate (from 2.71 to 18.80 °C/minâ1). The optimal conditions were 30 min of extraction at 80 °C, 160 V, and 900 Hz. Verification of the optimal conditions revealed that OOH yielded an extract with valuable bioactive compounds and saved 50% of the time and 80% of energy compared to the conventional treatment. The UPLC-DAD-ESI-MS-MS showed that there were similarities between the chemical profiles of the extracts obtained by conventional and OOH methods, while the concentration of major compounds varied depending on the extraction method. This information can help achieve sustainable development goals (SDGs) by maximizing the yield and minimizing energy and time consumption.
Ohmic Heating Extraction at Different Times, Temperatures, Voltages, and Frequencies: A New Energy-Saving Technique for Pineapple Core Valorization.
不同时间、温度、电压和频率下的欧姆加热提取:一种新的菠萝芯增值节能技术
阅读:7
作者:Gavahian Mohsen, Chu Rachael
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2022 | 起止号: | 2022 Jul 7; 11(14):2015 |
| doi: | 10.3390/foods11142015 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
