Elucidation of Expression Patterns and Functional Properties of Archaerhodopsin Derived from Halorubrum sp. Ejinoor.

阐明源自 Halorubrum sp. Ejinoor 的古细菌视紫红质的表达模式和功能特性

阅读:8
作者:Chao Luomeng, Yang Yuxia
This study elucidates the structural determinants and optogenetic potential of Archaerhodopsin HeAR, a proton pump from Halorubrum sp. Ejinoor isolated from Inner Mongolian salt lakes. Through heterologous expression in E. coli BL21 (DE3) and integrative biophysical analyses, we demonstrate that HeAR adopts a stable trimeric architecture (129 kDa) with detergent-binding characteristics mirroring bacteriorhodopsin (BR); however, it exhibits a 10 nm bathochromic spectral shift (λmax = 550 nm) and elevated proton affinity (Asp-95 pKa = 3.5 vs. BR Asp-85 pKa = 2.6), indicative of evolutionary optimization in its retinal-binding electrostatic microenvironment. Kinetic profiling reveals HeAR's prolonged photocycle (100 ms vs. BR's 11 ms), marked by rapid M-state decay (3.3 ms) and extended dark-adaptation half-life (160 min), a bistable behavior attributed to enhanced hydrogen bond persistence (80%) and reduced conformational entropy (RMSD = 2.0 à ). Functional assays confirm light-driven proton extrusion (0.1 ng H⁺/mg·s) with DCCD-amplified flux (0.3 ng H⁺/mg·s) and ATP synthesis (0.3 nmol/mg·s), underscoring its synergy with H⁺-ATPase. Phylogenetic and structural analyses reveal 95% homology with Halorubrum AR4 and conservation of 11 proton-wire residues, despite divergent Trp/Tyr/Ser networks that redefine chromophore stabilization. AlphaFold-predicted models (TM-score > 0.92) and molecular docking identify superior retinoid-binding affinity (ΔG = -12.27 kcal/mol), while spectral specificity (550-560 nm) and acid-stable photoresponse highlight its adaptability for low-irradiance neuromodulation. These findings position HeAR as a precision optogenetic tool, circumventing spectral overlap with excitatory opsins and enabling sustained hyperpolarization with minimized phototoxicity. By bridging microbial energetics and optobioengineering, this work expands the archaeal rhodopsin toolkit and provides a blueprint for designing wavelength-optimized photoregulatory systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。