Germline-Derived Gain-of-Function Variants of Gsα-Coding GNAS Gene Identified in Nephrogenic Syndrome of Inappropriate Antidiuresis.

在肾性抗利尿激素分泌异常综合征中发现了 Gsα 编码 GNAS 基因的种系衍生功能获得性变异

阅读:6
作者:Miyado Mami, Fukami Maki, Takada Shuji, Terao Miho, Nakabayashi Kazuhiko, Hata Kenichiro, Matsubara Yoichi, Tanaka Yoko, Sasaki Goro, Nagasaki Keisuke, Shiina Masaaki, Ogata Kazuhiro, Masunaga Youhei, Saitsu Hirotomo, Ogata Tsutomu
BACKGROUND: The stimulatory G-protein α-subunit encoded by GNAS exons 1-13 (GNAS-Gsα) mediates signal transduction of multiple G protein-coupled receptors, including arginine vasopressin receptor 2 (AVPR2). Various germline-derived loss-of-function GNAS-Gsα variants of maternal and paternal origin have been found in pseudohypoparathyroidism type Ia and pseudopseudohypoparathyroidism, respectively. Specific somatic gain-of-function GNAS-Gsα variants have been detected in McCune-Albright syndrome and may result in phosphate wasting. However, no germline-derived gain-of-function variant has been identified, implying that such a variant causes embryonic lethality. METHODS: We performed whole-exome sequencing in two families with dominantly inherited nephrogenic syndrome of inappropriate antidiuresis (NSIAD) as a salient phenotype after excluding a gain-of-function variant of AVPR2 and functional studies for identified variants. RESULTS: Whole-exome sequencing revealed two GNAS-Gsα candidate variants for NSIAD: GNAS-Gsα p.(F68_G70del) in one family and GNAS-Gsα p.(M255V) in one family. Both variants were absent from public and in-house databases. Of genes with rare variants, GNAS-Gsα alone was involved in AVPR2 signaling and shared by the families. Protein structural analyses revealed a gain-of-function-compatible conformational property for p.M255V-Gsα, although such assessment was not possible for p.F68_G70del-Gsα. Both variants had gain-of-function effects that were significantly milder than those of McCune-Albright syndrome-specific somatic Gsα variants. Model mice for p.F68_G70del-Gsα showed normal survivability and NSIAD-compatible phenotype, whereas those for p.M255V-Gsα exhibited severe failure to thrive. CONCLUSIONS: This study shows that germline-derived gain-of-function rare variants of GNAS-Gsα exist and cause NSIAD as a novel Gsα-mediated genetic disease. It is likely that AVPR2 signaling is most sensitive to GNAS-Gsα's gain-of-function effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。