Demographic analysis of cyanobacteria based on the mutation rates estimated from an ancient ice core.

基于古代冰芯估算的突变率对蓝藻进行种群统计分析

阅读:3
作者:Segawa Takahiro, Takeuchi Nozomu, Fujita Koji, Aizen Vladimir B, Willerslev Eske, Yonezawa Takahiro
Despite the crucial role of cyanobacteria in various ecosystems, little is known about their evolutionary histories, especially microevolutionary dynamics, because of the lack of knowledge regarding their mutation rates. Here we directly estimated cyanobacterial mutation rates based on ancient DNA analyses of ice core samples collected from Kyrgyz Republic that dates back to ~12,500 cal years before present. We successfully sequenced the 16S rRNA and 16S-23S internal transcribed spacer (ITS) region. Two cyanobacterial operational taxonomic units (OTUs) were detected from the ancient ice core samples, and these OTUs are shared with those from the modern glacier surface. The mutation rate of ITS region was estimated by comparing ancient and modern populations, and were at the magnitude of 10(-7)substitutions/sites/year. By using a model selection framework, we also demonstrated that the ancient sequences from the ice sample were not contaminated from modern samples. Bayesian demographic analysis based on coalescent theory revealed that cyanobacterial population sizes increased over Asia regions during the Holocene. Thus, our results enhance our understanding of the enigmatic timescale of cyanobacterial microevolution, which has the potential to elucidate the environmental responses of cyanobacteria to the drastic climatic change events of the Quaternary.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。