The majority of apparently balanced translocation (ABT) carriers are phenotypically normal. However, several mechanisms were proposed to underlie phenotypes in affected ABT cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by Sanger sequencing was applied to further characterize de novo ABTs in three affected individuals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible underlying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-linked deafness gene namely POU3F4, thus suggesting an underlying long-range position effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a heterozygous deletion disrupted SOX5; a dominant nervous system development gene previously reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) breakpoint directly disrupted NFIB, a gene involved in lung maturation and development of the pons with important functions in main speech processes. To conclude, in contrast to familial ABT cases with identical rearrangements and discordant phenotypes, where translocations are considered coincidental, translocations seem to be associated with phenotype presentation in affected de novo ABT cases. In addition, this study highlights the importance of investigating both coding and non-coding regions to decipher the underlying pathogenic mechanisms in these patients, and supports the potential introduction of low coverage WG-MPS in the clinical investigation of de novo ABTs.
Position effect, cryptic complexity, and direct gene disruption as disease mechanisms in de novo apparently balanced translocation cases.
位置效应、隐蔽复杂性和直接基因破坏是新生表观平衡易位病例的致病机制
阅读:4
作者:Aristidou Constantia, Theodosiou Athina, Bak Mads, Mehrjouy Mana M, Constantinou Efthymia, Alexandrou Angelos, Papaevripidou Ioannis, Christophidou-Anastasiadou Violetta, Skordis Nicos, Kitsiou-Tzeli Sophia, Tommerup Niels, Sismani Carolina
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Oct 5; 13(10):e0205298 |
| doi: | 10.1371/journal.pone.0205298 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
