ALS-Associated KIF5A Mutation Causes Locomotor Deficits Associated with Cytoplasmic Inclusions, Alterations of Neuromuscular Junctions, and Motor Neuron Loss

ALS 相关 KIF5A 突变导致与细胞质内含物、神经肌肉接头改变和运动神经元丢失相关的运动缺陷

阅读:4
作者:Laurent Soustelle, Franck Aimond, Cristina López-Andrés, Véronique Brugioti, Cédric Raoul, Sophie Layalle

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Recently, genome-wide association studies identified KIF5A as a new ALS-causing gene. KIF5A encodes a protein of the kinesin-1 family, allowing the anterograde transport of cargos along the microtubule rails in neurons. In ALS patients, mutations in the KIF5A gene induce exon 27 skipping, resulting in a mutated protein with a new C-terminal region (KIF5A Δ27). To understand how KIF5A Δ27 underpins the disease, we developed an ALS-associated KIF5A Drosophila model. When selectively expressed in motor neurons, KIF5A Δ27 alters larval locomotion as well as morphology and synaptic transmission at neuromuscular junctions in both males and females. We show that the distribution of mitochondria and synaptic vesicles is profoundly disturbed by KIF5A Δ27 expression. That is consistent with the numerous KIF5A Δ27-containing inclusions observed in motor neuron soma and axons. Moreover, KIF5A Δ27 expression leads to motor neuron death and reduces life expectancy. Our in vivo model reveals that a toxic gain of function underlies the pathogenicity of ALS-linked KIF5A mutant.SIGNIFICANCE STATEMENT Understanding how a mutation identified in patients with amyotrophic lateral sclerosis (ALS) causes the disease and the loss of motor neurons is crucial to fight against this disease. To this end, we have created a Drosophila model based on the motor neuron expression of the KIF5A mutant gene, recently identified in ALS patients. KIF5A encodes a kinesin that allows the anterograde transport of cargos. This model recapitulates the main features of ALS, including alterations of locomotion, synaptic neurotransmission, and morphology at neuromuscular junctions, as well as motor neuron death. KIF5A mutant is found in cytoplasmic inclusions, and its pathogenicity is because of a toxic gain of function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。