During the asymptomatic liver stage, Plasmodium resides within a parasitophorous vacuole (PV) that protects the parasite from immune clearance while also restricting nutrient exchange with its host cell. Although it is known that Plasmodium must scavenge resources from its environment, the specific nutrients sequestered and the mechanisms for transporting them to the PV are poorly understood, particularly during the liver stage. In this study, we investigated the role of host lipids and discovered that sphingolipids are critical for both Plasmodium berghei liver stage development and invasion. Specifically, exogenous C16-ceramide enhanced parasite development and nuclear replication, while sphingomyelin in the host cell membrane was essential for parasite invasion. Live microscopy studies using NBD labeled sphingolipids further found that exogenous lipids are actively transported into the PV with sphingolipid scavenging occurring at all tested time points throughout the liver stage. This was, in part, supported by the host ceramide transporter, CERT1. CERT1 was enriched at the PV and genetic disruption significantly reduced both P. berghei load and ceramide trafficking into the PV. Finally, we identified proteins of the host salvage pathway as critical for the Plasmodium liver stage using chemical and genetic approaches. In particular, depletion of CERS3 and SPHK1 affected PV size and infection rate, but not invasion. Our findings enhance our understanding of host-parasite lipid interactions and may offer novel therapeutic targets to reduce disease burden.IMPORTANCEPlasmodium, the causative agent of malaria, remains a significant global health challenge, placing approximately half the world's population at risk of infection. Despite the existence of antimalarial treatments, the emergence of drug-resistant parasites highlights the urgent need to identify novel therapeutic targets. The Plasmodium liver stage represents a promising avenue for drug discovery as inhibiting parasite development would prevent both symptomatic disease and transmission to the mosquito vector. In this study, we examined the role of host sphingolipids and found that members perform distinct functions, supporting parasite invasion and/or development. We also identified several host proteins that influence Plasmodium liver stage viability and contribute to sphingolipid acquisition. In addition to their role in the liver stage, sphingolipids are known to be critical for the asexual and sexual blood stages, suggesting that targeting host sphingolipid metabolism could offer a novel multistage therapeutic strategy against malaria.
Host sphingolipids support Plasmodium berghei liver stage development.
宿主鞘脂支持伯氏疟原虫肝期发育
阅读:12
作者:Schroeder Erin A, Colón Isabel C, Petruzziello Porter E, Derbyshire Emily R
| 期刊: | mBio | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 16(8):e0167525 |
| doi: | 10.1128/mbio.01675-25 | 研究方向: | 发育与干细胞 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
