Early development of the thalamic inhibitory feedback loop in the primary somatosensory system of the newborn mice

新生小鼠初级体感系统中丘脑抑制反馈回路的早期发育

阅读:4
作者:Alexis Evrard, Nicole Ropert

Abstract

Spontaneous neuronal activity plays an important role during the final development of the brain circuits and the formation of the primary sensory maps. In young rats, spindle bursts have been recorded in the primary somatosensory cortex. They are correlated with spontaneous muscle twitches and occur before active whisking. They bear similarities with the spindles recorded in adult brain that occur during early stages of sleep and rely on a thalamic feedback loop between the glutamatergic nucleus ventroposterior medialis (nVPM) and the GABAergic nucleus reticularis thalami (nRT). However, whether a functional nVPM-nRT loop exists in newborn rodents is unknown. We studied the reciprocal synaptic connections between nVPM and nRT in thalamic acute slices from mice from birth [postnatal day 0 (P0)] until P9. We first demonstrated that nVPM-to-nRT EPSCs could be distinguished from corticothalamic EPSCs by their inhibition by 5-HT attributable to the transient expression of functional presynaptic serotonin 1B receptors. The nVPM-to-nRT EPSCs and nRT-to-nVPM IPSCs were both detected the first day after birth; their amplitude near 2 nS was relatively stable until P5. At P6-P7, there was a rapid and simultaneous increase of both nVPM-to-nRT EPSCs and nRT-to-nVPM IPSCs that reached 8 and 9 nS, respectively. Our results show that the thalamic synapses implicated in spindle activity are functional shortly after birth, suggesting that they could already generate spindles during the first postnatal week. Our results also suggest an inhibitory action of 5-HT on the spindle bursts of the newborn mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。