BACKGROUND AND PURPOSE: Pathological cardiomyocyte hypertrophy is a response to cardiac stress that typically leads to heart failure. Despite being a primary contributor to pathological cardiac remodelling, the therapeutic space that targets hypertrophy is limited. Here, we apply a network model to virtually screen for FDA-approved drugs that induce or suppress cardiomyocyte hypertrophy. EXPERIMENTAL APPROACH: A logic-based differential equation model of cardiomyocyte signalling was used to predict drugs that modulate hypertrophy. These predictions were validated against curated experiments from the prior literature. The actions of midostaurin were validated in new experiments using TGFβ- and noradrenaline (NE)-induced hypertrophy in neonatal rat cardiomyocytes. KEY RESULTS: Model predictions were validated in 60 out of 70 independent experiments from the literature and identify 38 inhibitors of hypertrophy. We additionally predict that the efficacy of drugs that inhibit cardiomyocyte hypertrophy is often context dependent. We predicted that midostaurin inhibits cardiomyocyte hypertrophy induced by TGFβ, but not noradrenaline, exhibiting context dependence. We further validated this prediction by cellular experiments. Network analysis predicted critical roles for the PI3K and RAS pathways in the activity of celecoxib and midostaurin, respectively. We further investigated the polypharmacology and combinatorial pharmacology of drugs. Brigatinib and irbesartan in combination were predicted to synergistically inhibit cardiomyocyte hypertrophy. CONCLUSION AND IMPLICATIONS: This study provides a well-validated platform for investigating the efficacy of drugs on cardiomyocyte hypertrophy and identifies midostaurin for consideration as an antihypertrophic drug.
Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy.
虚拟药物筛选揭示了心肌细胞肥大抑制的背景依赖性
阅读:7
作者:Eggertsen Taylor G, Saucerman Jeffrey J
| 期刊: | British Journal of Pharmacology | 影响因子: | 7.700 |
| 时间: | 2023 | 起止号: | 2023 Nov;180(21):2721-2735 |
| doi: | 10.1111/bph.16163 | 研究方向: | 细胞生物学 |
| 疾病类型: | 心肌炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
