Intracellular sensing technologies necessitate a delicate balance of spatial resolution, sensitivity, biocompatibility, and stability. While existing methods partially fulfill these criteria, none offer a comprehensive solution. Nanodiamonds (NDs) harboring nitrogen-vacancy (NV) centers have emerged as promising candidates due to their sensing capabilities under biological conditions and their ability to meet all aforementioned requirements. This study focuses on expanding the application of NDs and NV center-based sensing to neuronal contexts by investigating their functionalization and subsequent effects on three distinct cell lines relevant to neurodegenerative disease research. Our study concentrates on positioning fluorescent NDs (FNDs) with NV center point defects onto neuronal cell surfaces. Achieving this through specific antibody attachment enhances the proximity of FND to neurites, facilitating the detection of local action potentials. Targeting voltage-dependent calcium channels (Cav2.2) with biotin-streptavidin-bound antibodies enables the precise positioning of FNDs. The functionalized FNDs (f-FNDs) show increased size and zeta potential, confirming the antibody presence without compromising cell viability. Two-color confocal imaging and co-localization algorithms are employed to further attest to the success of the functionalization. The f-FNDs are applied to cell cultures of three cell lines: SH-SY5Y, differentiated dopaminergic neurons, and hippocampal rat neurons; their biocompatibility and effects on synaptic activity are explored. Moreover, preliminary total internal reflection fluorescence - optically detected magnetic resonance (TIRF-ODMR) experiments across cellular sites demonstrate the magnetic field sensitivity of our sensor network. The successful establishment of this sensor network provides a platform for characterizing neuronal signaling in healthy models and conditions mimicking Parkinson's disease.
Functionalized Nanodiamonds for Targeted Neuronal Electromagnetic Signal Detection.
用于靶向神经元电磁信号检测的功能化纳米金刚石
阅读:9
作者:Costa Beatriz N L, Camarneiro Filipe, Marote Ana, Barbosa Catarina, Vedor Carlos, Tomé Diogo, Costa Filipa J, Dias Marta S, Correia Joana, Pires Joel, ChÃcharo Alexandre, Almeida Ramiro D, Salgado António, Nieder Jana B
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2024 | 起止号: | 2024 Nov 6; 16(44):60828-60841 |
| doi: | 10.1021/acsami.4c12462 | 研究方向: | 信号转导、神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
