The Role of GPX Enzymes, Lipid Profiles, and Iron Accumulation in Necrotizing Enterocolitis.

GPX酶、脂质谱和铁积累在坏死性小肠结肠炎中的作用

阅读:11
作者:Gershner Grant H, Calkins Chase, Golubkova Alena, Schlegel Camille, Massahi Aslan, Lerner Megan, Frickenstein Alex N, Bonvicino Sarah, Agbaga Martin-Paul, Hunter Catherine J
Necrotizing enterocolitis (NEC) is a serious GI disease of premature infants, marked by intestinal inflammation and necrosis. Recent research has highlighted the potential role of oxidative stress (OS) and ferroptosis in its pathogenesis. We previously identified a deficiency in Glutathione Peroxidase (GPX) 4 and lipid radical accumulation, prompting further investigation. Human intestinal tissue from a prior study was processed, and it underwent RNA and protein isolation, Immunohistochemistry, Immunofluorescence, and acid digestion for iron and selenium analysis via Inductively coupled mass spectrometry (ICP-MS). NEC was induced in human enteroids using lipopolysaccharide (LPS) and hypoxia, followed by RNA/protein isolation and lipidomic analysis. Humans with NEC had significantly higher levels of GPX2 (p = 0.0003). Enteroids exposed to NEC conditions had significantly decreased amounts of NADPH compared to initial controls (p = 0.0091), but similar levels compared to post-24 h controls (p = 0.3520). Patients with NEC had significantly higher levels of iron compared to controls via the bathophenanthroline-based assay (p = 0.0102) and with ICP-MS (p = 0.0148). There were several significant alterations in lipid distribution between NEC and control patients, but not in the fatty acid profiles. Our study suggests that oxidative stress, iron dysregulation, and altered lipid metabolism contribute to NEC pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。