Inhibiting fibronectin assembly in the breast tumor microenvironment increases cell death and improves response to doxorubicin.

抑制乳腺肿瘤微环境中的纤连蛋白组装可增加细胞死亡并改善对阿霉素的反应

阅读:9
作者:Gari Metti K, Lee Hye Jin, Inman David R, Burkel Brian M, Highland Margaret A, Kwon Glen S, Gupta Nikesh, Ponik Suzanne M
PURPOSE: Effective therapies for solid tumors, including breast cancers, are hindered by several roadblocks that can be largely attributed to the fibrotic extracellular matrix (ECM). Fibronectin (FN) is a highly upregulated ECM component in the fibrotic tumor stroma and is associated with poor patient prognosis. This study aimed to investigate the therapeutic potential of an anti-fibrotic peptide that specifically targets FN and blocks the fibrillar assembly of FN. METHODS: To target FN, we used PEGylated Functional Upstream Domain (PEG-FUD), which binds to the 70 kDa N-terminal region of FN with high affinity, localizes to mammary tumors, and potently inhibits FN assembly in vitro and in vivo. Here, we used the 4T1 tumor model to investigate the efficacy and mechanisms of PEG-FUD to inhibit tumor growth. RESULTS: Our data demonstrates that PEG-FUD monotherapy reduces tumor growth without systemic toxicity. Analysis of the tumor microenvironment revealed that PEG-FUD effectively inhibited FN matrix assembly within tumors and reduced adhesion-mediated signaling through α5 integrin and FAK leading to enhanced tumor cell death. Notably, signaling through FAK has been associated with resistance mechanisms to doxorubicin (DOX). Therefore, we tested the combination of PEG-FUD and Dox, which significantly reduced tumor growth by 60% compared to vehicle control and 30% compared to Dox monotherapy. CONCLUSIONS: Our findings demonstrate that PEG-FUD significantly modifies the peritumoral ECM of breast cancer, leading to increased tumor cell death, and potentiates the efficacy of conventional breast cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。