In the present study, we investigated the effects of tannic acid (TA), a hydrolysable polyphenol, on angiotensin type 1 receptor (AT1R) expression in continuously passaged rat liver epithelial cells. Under normal conditions, exposure of cells to TA resulted in the down-regulation of AT1R-specific binding in concentrations ranging from 12.5-100 μg/ml (7.34-58.78 μm) over a time period of 2-24 h with no change in receptor affinity to angiotensin II (AngII). The inhibitory effect of TA on AT1R was specific and reversible. In TA-treated cells, we observed a significant reduction in AngII-mediated intracellular calcium signaling, a finding consistent with receptor down-regulation. Under similar conditions, TA down-regulated AT1R mRNA expression without changing the rate of mRNA degradation, suggesting that TA's effect is mediated through transcriptional inhibition. Cells expressing recombinant AT1R without the native promoter show no change in receptor expression, whereas a pCAT reporter construct possessing the rat AT1R promoter was significantly reduced in activity. Furthermore, TA induced the phosphorylation of MAPK p42/p44. Pretreatment of the cells with a MAPK kinase (MEK)-specific inhibitor PD98059 prevented TA-induced MAPK phosphorylation and down-regulation of the AT1R. Moreover, there was no reduction in AngII-mediated intracellular calcium release upon MEK inhibition, suggesting that TA's observed inhibitory effect is mediated through MEK/MAPK signaling. Our findings demonstrate, for the first time, that TA inhibits AT1R gene expression and cellular response, suggesting the observed protective effects of dietary polyphenols on cardiovascular conditions may be, in part, through inhibition of AT1R expression.
Tannic acid down-regulates the angiotensin type 1 receptor through a MAPK-dependent mechanism.
单宁酸通过 MAPK 依赖性机制下调血管紧张素 1 型受体
阅读:14
作者:Yesudas Rekha, Gumaste Upendra, Snyder Russell, Thekkumkara Thomas
| 期刊: | Molecular Endocrinology | 影响因子: | 0.000 |
| 时间: | 2012 | 起止号: | 2012 Mar;26(3):458-70 |
| doi: | 10.1210/me.2011-1224 | 研究方向: | 信号转导 |
| 信号通路: | MAPK/ERK | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
