Bruton's tyrosine kinase (BTK) is a non-RTK cytoplasmic kinase predominantly expressed by hemopoietic lineages, particularly B-cells. A new oxindole-based focused library was designed to identify potent compounds targeting the BTK protein as anticancer agents. This study used rational approaches like structure-based pharmacophore modeling, docking, and ADME properties to select compounds. Molecular dynamics simulations carried out at 20 ns supported the stability of compound 9g within the binding pocket. All the compounds were synthesized and subjected to biological screening on two BTK-expressing cancer cell lines, RAMOS and K562; six non-BTK cancer cell lines, A549, HCT116 (parental and p53(-/-)), U2OS, JURKAT, and CCRF-CEM; and two non-malignant fibroblast lines, BJ and MRC-5. This study resulted in the identification of four new compounds, 9b, 9f, 9g, and 9h, possessing free binding energies of -10.8, -11.1, -11.3, and -10.8 kcal/mol, respectively, and displaying selective cytotoxicity against BTK-high RAMOS cells. Further analysis demonstrated the antiproliferative activity of 9h in RAMOS cells through selective inhibition of pBTK (Tyr223) without affecting Lyn and Syk, upstream proteins in the BCR signaling pathway. In conclusion, we identified a promising oxindole derivative (9h) that shows specificity in modulating BTK signaling pathways.
Novel 5-Substituted Oxindole Derivatives as Bruton's Tyrosine Kinase Inhibitors: Design, Synthesis, Docking, Molecular Dynamics Simulation, and Biological Evaluation.
新型 5-取代吲哚酮衍生物作为布鲁顿酪氨酸激酶抑制剂:设计、合成、对接、分子动力学模拟和生物学评价
阅读:7
作者:Velavalapalli Vani Madhuri, Maddipati Venkatanarayana Chowdary, Gurská SoÅa, Annadurai Narendran, LiÅ¡ková Barbora, Katari Naresh Kumar, Džubák Petr, Hajdúch Marián, Das Viswanath, Gundla Rambabu
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Feb 7; 9(7):8067-8081 |
| doi: | 10.1021/acsomega.3c08343 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
