BACKGROUND: Aging of the brain is associated with cognitive decline and recognized as a major risk factor for the development of neurodegenerative diseases. On a cellular level, brain aging is accompanied by a progressive increase of the basal pro-inflammatory tonus, leading to the activation of phagocytic pathways in brain-resident microglia and disruptive effects on synaptic neurotransmission. While the aging process affects all brain compartments at different velocities and one of the particularly affected regions is the cerebellum (CB), the underlying effects remain elusive. METHODS: In the present study, we harnessed a murine model of natural aging in males combined with orthogonal experimental approaches comprising of cytokine gene expression analysis, flow cytometry, immunohistochemistry, and flow synaptometry. RESULTS: We report age-dependent morphological and phenotypic changes in microglia that are distinct in the cortex (CTX) and CB. Furthermore, we show an increased expression of cytokines and complement factors upon aging and a decline of C3-tagged VGLUT1(+) presynaptic puncta in the CB. Using flow synaptometry to quantify the composition of synapses in more detail, we validated the reduction of C3b-labeled excitatory synaptosomes while the overall frequency of glutamatergic synaptosomes remained unaffected by aging. Notably, proteoglycans brevican and aggrecan, key components of the neural extracellular matrix, were significantly upregulated in the middle-aged CB. DISCUSSION: The data presented herein suggests the ECM-mediated shielding of synapses from complement-tagging and subsequent engulfment by microglia. Thus, we provide novel insights into mechanisms that may confer resilience in the brain by modulating synapse removal in the context of aging.
Reduced synaptic tagging by complement protein C3 is associated with elevated extracellular matrix in the middle-aged cerebellum of mice.
补体蛋白 C3 对突触的标记减少与中年小鼠小脑中细胞外基质增多有关
阅读:8
作者:Düsedau Henning Peter, Cangalaya Carla, Stoyanov Stoyan, Dityatev Alexander, Dunay Ildiko Rita
| 期刊: | Frontiers in Aging Neuroscience | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Jun 26; 17:1616390 |
| doi: | 10.3389/fnagi.2025.1616390 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
