Enhancing the Functionality of Immunoisolated Human SC-βeta Cell Clusters through Prior Resizing.

通过预先调整大小来增强免疫分离的人类 SC-β 细胞簇的功能

阅读:5
作者:Bochenek Matthew A, Walters Ben, Zhang Jingping, Fenton Owen S, Facklam Amanda, Kroneková Zuzana, Pelach Michal, Engquist Elise N, Leite Nayara C, Morgart Alex, Lacík Igor, Langer Robert, Anderson Daniel G
The transplantation of immunoisolated stem cell derived beta cell clusters (SC-β) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable β-cell source without the need for systemic immune suppression. SC-β cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-β clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-β cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-β cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-β cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-β cells exhibited the least amount of fibrosis and enhanced markers of β-cell maturation. The utilization of small SC-β cell clusters within immunoprotection devices may improve clinical translation in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。