BACKGROUND: Pyroptosis, inflammation-related programed cell death mediated by NLRP3 inflammasome, is involved in the pathogenesis of cerebral hypoxic-ischemic injury. Our study aims to explore the biological role of growth differentiation factor (GDF)15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal pyroptosis. METHODS: HT22 neurons were subjected to OGD/R to simulate cerebral hypoxic-ischemic injury. Cells were transfected with plasmids to overexpress GDF15, or lentiviral-based shRNAs constructs to silence GDF15. ELISA assay was used to detect GDF15, IL-1β, IL-18, and neuron specific enolase (NSE) levels. Cell pyroptosis was measured by flow cytometery. Chromatin immunoprecipitation assay was used to detect interaction of H3K27ac with GDF15 promoter. GDF15, NLRP3, Caspase-1 p20 and GSDMD-N expressions were measured by Western blotting. RESULTS: Patients with malignant middle cerebral artery infarction showed decreased GDF15, but increased IL-1β, IL-18, and NSE levels in serum compared to healthy controls. OGD/R treatment caused significant increases in the levels of IL-1β, IL-18 and NSE, percentages of pyroptotic cells, and expressions of NLRP3, Caspase-1 p20, and GSDMD in HT22 cells, which were markedly reversed by GDF15 overexpression. However, GDF15 knockdown resulted in neuronal injury similar to those observed in OGD/R treatment. The GDF15 knockdown-induced effects were counteracted by treatment with NLRP3 inhibitor. OGD/R decreased the enrichment of H3K27ac in the promoter of GDF15 to down-regulate GDF15, but was compromised by co-treatment with HDAC2 inhibitor. CONCLUSION: Our data demonstrates that GDF15 attenuates OGD/R-induced pyroptosis through NLRP3 inflammasome. HDAC2 is involved in mediating OGD-induced GDF15 down-regulation via H3K27ac modification. GDF15 overexpression and HDAC2 inhibition hold potential as useful therapeutic strategies for neuroprotection.
GDF15 regulated by HDAC2 exerts suppressive effects on oxygen-glucose deprivation/reoxygenation-induced neuronal cell pyroptosis via the NLRP3 inflammasome.
受 HDAC2 调控的 GDF15 通过 NLRP3 炎症小体对氧-葡萄糖剥夺/再氧合诱导的神经元细胞焦亡发挥抑制作用
阅读:8
作者:Xiao Hua, Chen Wei, Lu Darong, Shi Guixin, Xia Xiangping, Yao Shengtao
| 期刊: | Toxicology Research | 影响因子: | 2.100 |
| 时间: | 2024 | 起止号: | 2024 Jul 25; 13(4):tfae112 |
| doi: | 10.1093/toxres/tfae112 | 研究方向: | 神经科学、细胞生物学 |
| 疾病类型: | 神经炎症 | 信号通路: | 炎性小体 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
