BACKGROUND: As potent anti-inflammatory agents, glucocorticoids (GCs) have been widely used in the treatment of traumatic brain injury (TBI). However, their use remains controversial. Our previous study indicated that although dexamethasone (DEX) exerted anti-inflammatory effects and protected the blood-brain barrier (BBB) by activating the glucocorticoid receptor (GR) after TBI, it also impeded tissue repair processes due to excessive anti-inflammation. Conversely, fludrocortisone, acting as a specific mineralocorticoid receptor (MR) agonist, has shown potential in controlling neuroinflammation and promoting neurorepair, but the underlying mechanisms need further exploration. OBJECTIVE: This study aimed to explore the impact of the MR agonist fludrocortisone on microglia polarization, angiogenesis, functional rehabilitation, and associated mechanisms after TBI. METHODS: We established a mice controlled cortical impact model, and then immunofluorescence staining, western blot, rt-PCR, and MRI were performed to investigate microglia polarization, angiogenesis, and brain edema in the ipsilateral hemisphere after TBI and fludrocortisone treatment. Subsequently, functional tests including morris water maze, sucrose preference test, and forced swimming test were conducted to evaluate the effects of fludrocortisone treatment on neurofunction after TBI. RESULTS: Our results revealed that fludrocortisone suppressed neuroinflammation, enhanced angiogenesis and neuronal survival, and promoted functional rehabilitation by inducing a shift in microglia phenotype from M1 to M2 via the JAK/STAT6/PPARγ pathway. Additionally, the PI3K/Akt/HIF-1α pathway was involved in VEGF expression and in the process of angiogenesis. CONCLUSION: Fludrocortisone, the specific MR agonist, exerted anti-neuroinflammatory and neuroprotective effects by regulating phenotypic switching of microglia from M1 to M2 rather than suppressing all types of microglia. Our study provided a theoretical basis for the therapeutic strategy of GCs targeting neuroinflammation after TBI.
Balancing Anti-Inflammation and Neurorepair: The Role of Mineralocorticoid Receptor in Regulating Microglial Phenotype Switching After Traumatic Brain Injury.
平衡抗炎和神经修复:盐皮质激素受体在调节创伤性脑损伤后小胶质细胞表型转换中的作用
阅读:8
作者:Zhang Bin, Bai Miao, Yang Mengshi, Wang Yumei, Zhang Xueling, Chen Xiyu, Gao Min, Liu Baiyun, Shi Guangzhi
| 期刊: | CNS Neuroscience & Therapeutics | 影响因子: | 5.000 |
| 时间: | 2025 | 起止号: | 2025 Apr;31(4):e70404 |
| doi: | 10.1111/cns.70404 | 研究方向: | 神经科学、细胞生物学 |
| 疾病类型: | 神经炎症 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
