Engineered Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Mitigate Liver Fibrosis by Delivering USP10 to Reprogram Macrophage Phenotype.

阅读:2
作者:Tian Siyuan, Zhou Xia, Zheng Linhua, Liu Jingyi, Zhang Miao, Ma Shuoyi, Zheng Xiaohong, Guo Guanya, Ju Ruobing, Yang Fangfang, Liu Yansheng, Li Bo, Hu Yinan, Xia Erzhuo, Su Rui, Sun Keshuai, Cui Lina, Guo Changcun, Zhou Xinmin, Wang Jingbo, Shang Yulong, Han Ying
The utilization of mesenchymal stem cells (MSCs) serves as an encouraging strategy for treating liver fibrosis. However, precise mechanisms are not completely understood. Recently, small extracellular vesicles (sEVs) have emerged as major paracrine effectors mediating the anti-fibrotic effects of MSCs. This study seeks to examine the healing properties of MSCs-sEVs on liver fibrosis and decipher the associated signaling pathways. Herein, MSCs substantially ameliorated carbon tetrachloride (CCL4)-induced liver inflammation and fibrosis in mice, with this effect predominantly attributed to their derived sEVs. Both in vivo and in vitro experiments verified that MSCs-sEVs skewed the phenotype of liver macrophages into an anti-fibrotic phenotype. Mass spectrometry analysis showed that ubiquitin-specific peptidase 10 (USP10) was significantly enriched in MSCs-sEVs, which was critical for protection against liver fibrosis. USP10 stabilizes Krüppel-like factor 4 (KLF4) via deubiquitination, participating in the modulation of macrophage phenotypes. Mechanistically, KLF4 reprograms macrophages to enhance their anti-inflammatory and repairing functions by modulating NF-κB/STAT6 signaling and regulating the transcription of MMP12. Finally, the exogenous incorporation of USP10 into MSCs-sEVs via genetic engineering further potentiated their antifibrotic effects. These findings deepen the knowledge regarding the cellular pathways through which MSCs ameliorate liver fibrosis, offering a theoretical basis for sEV-based therapeutic strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。