CIRP contributes to multiple organ damage in acute pancreatitis by increasing endothelial permeability.

CIRP通过增加内皮通透性,导致急性胰腺炎中多器官损伤

阅读:5
作者:Liu Wuming, Wu Derek H, Wang Tao, Wang Mengzhou, Xu Yujia, Ren Yifan, Lyu Yi, Wu Rongqian
Acute pancreatitis can lead to systemic inflammation and multiple organ damage. Increased endothelial permeability is a hallmark of systemic inflammation. Several studies have demonstrated that cold-inducible RNA-binding protein (CIRP) functions as a proinflammatory factor in various diseases. However, its role in endothelial barrier dysfunction during acute pancreatitis remains unknown. To study this, acute pancreatitis was induced by two hourly intraperitoneal injections of 4.0 g/kg L-arginine in wild-type (WT) or CIRP knockout mice. Our results showed that CIRP levels in the pancreas, small intestine, lung, and liver were upregulated at 72 h after the induction of acute pancreatitis in WT mice. CIRP deficiency significantly attenuated tissue injury, edema, and extravasation of Evans blue in the pancreas, small intestine, lung, and liver at 72 h after L-arginine injection. Administration of C23, a specific antagonist of CIRP, at 2 h after the last injection of L-arginine also produced similar protective effects as CIRP knockout in mice. In vitro studies showed that recombinant CIRP caused a significant reduction in transcellular electric resistance in HUVEC monolayers. Immunocytochemical analysis of endothelial cells exposed to CIRP revealed an increased formation of actin stress fibers. VE-cadherin and β-catenin staining showed intercellular gaps were formed in CIRP-stimulated cells. Western blot analysis showed that CIRP induced SRC phosphorylation at TYR416. Exposure to the SRC inhibitor PP2 reduced CIRP-induced endothelial barrier dysfunction in HUVEC monolayers. In conclusion, blocking CIRP mitigates acute pancreatitis-induced multiple organ damage by alleviating endothelial hyperpermeability. Targeting CIRP may be a potential therapeutic option for acute pancreatitis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。