Platelets are indispensable for physiological hemostasis and pathological thrombus formation, and platelet adhesion to endothelial collagen is a critical initial step in thrombus formation, often overlooked in current antiplatelet therapies. This study aims to elucidate how ginsenoside CK enhances hemodynamic circulation, alleviates stasis, and proposes therapeutic mechanisms. Inspired by the effects on improving microcirculatory disturbances in an acute soft tissue injury model, CK was identified as a PHD2 inhibitor, effectively suppressing platelet adhesion to collagen. It was proposed that targeting PHD2 regulates collagen hydroxylation modification, thereby influencing the formation of its three-dimensional structure, reducing the binding affinity between VWF and collagen, and ultimately suppressing thrombotic events. The efficacy of this mechanism was subsequently confirmed through a mouse DIC model, demonstrating the feasibility of CK in alleviating circulatory disorders. It is worth noting that when Phd2 was knocked down in mice's lungs, pulmonary embolism was significantly reduced. Additionally, PHD2 inhibitors approved for other diseases have exhibited similar anti-thrombotic effects. Moreover, when PHD2 inhibitors were combined with aspirin, they more effectively inhibited arterial thrombosis in rats. The findings offer valuable insights into potential targets for developing antiplatelet drugs or expanding therapeutic applications for existing PHD2 inhibitors in treating thrombotic diseases.
Ginsenoside CK targets PHD2 to prevent platelet adhesion and enhance blood circulation by modifying the three-dimensional arrangement of collagen.
人参皂苷 CK 靶向 PHD2,通过改变胶原蛋白的三维排列来防止血小板粘附并增强血液循环
阅读:8
作者:Cheng Chuanjing, Liu Kaixin, Zhang Jinling, Han Yanqi, Zhang Tiejun, Hou Yuanyuan, Bai Gang
| 期刊: | Acta Pharmaceutica Sinica B | 影响因子: | 14.600 |
| 时间: | 2025 | 起止号: | 2025 Mar;15(3):1497-1513 |
| doi: | 10.1016/j.apsb.2024.12.038 | 研究方向: | 信号转导 |
| 信号通路: | Adhesion/ECM | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
