TMAO Induces Vascular Endothelial Cells Pyroptosis Through TET2-CYTB-ROS Pathway.

TMAO通过TET2-CYTB-ROS通路诱导血管内皮细胞焦亡

阅读:4
作者:Xia Linzhen, Wang Zuo, Chen Xiangyu
PURPOSE: The study was aimed at identifying that cytochrome b (CYTB) expression regulation by trimethylamine N-oxide (TMAO) can induce mitochondria reactive oxygen species (ROS) and promote vascular endothelial cells (VECs) pyroptosis. METHODS: VECs were transfected with TET methylcytosine dioxygenase 2 (TET2)/CYTB overexpression lentivirus, CYTB siRNA, TET2 shRNA, or NC. ROS levels were measured using MitoSOX Red fluorescence, and pyroptosis was evaluated via Hoechst 33342/PI staining. Western blot was used to measure TET2, the NOD-like receptor thermal protein domain associated protein 3 (NLRP3), proteolytic cleavage of gasdermin D (GSDMD), CYTB, and Caspase-1 expression. Interleukin (IL)-1β was quantified by ELISA. The mRNA expression of IL-1β, CYTB, ND2, and TET2 was measured by qRT-PCR. Cellular ultrastructure was examined by electron microscope, and calcium flux was monitored with Fluo-4AM. CYTB methylation was detected using Targeted Bisulfite Sequencing. RESULTS: This study showed that TMAO can down-regulate the expression of CYTB inVECs, cause VECs pyroptosis and mitochondrial dysfunction (MDF). CYTB overexpression antagonized the effect of TMAO. Further, silencing CYTB promoted mtROS production, and MitoTEMPO, a ROS scavenger, inhibited VECs pyroptosis caused by CYTB silencing. In addition, TET2 had demethylation activity. The expression of CYTB was positively regulated by TET2. TMAO was able to inhibit the expression of TET2 and promote the methylation level of the CYTB gene promoter. CONCLUSION: TMAO promotes the methylation level of the CYTB gene promoter and down-regulates the expression of CYTB by inhibiting the expression of TET2. The decreased expression level of CYTB induces ROS, promoting VECs pyroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。